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Introduction

Eigen is an open-source linear algebra library implemented in C++. It’s fast and well-suited for a
wide range of tasks, from heavy numerical computation, to simple vector arithmetic. The goal of
this tutorial is to introduce the features of Eigen required for implementing graphics applications,
to readers possessing basic knowledge of C++, linear algebra, and computer graphics.

Goals

After reading this tutorial, the reader should be able to

1. Install Eigen on computers running Linux, Mac OS, and Windows.
2. Create and initialize matrices and vectors of any size with Eigen in C++.

3. Use Eigen for basic algebraic operations on matrices and vectors. The reader should be
able to perform addition, multiplication, scalar multiplication, and matrix inversion and
transposition.

4. Use Eigen’s built-in functions to create 4x4 transformation matrices.

Installing Eigen

We’ll use Git to download the source files for Eigen into the user’s home directory. You can, of
course, use any directory you prefer - just replace the tilde ~ in the following commands with
your desired download path.

$ cd ~
$ git clone https://github.com/eigenteam/eigen-git-mirror

If you’re like me and the idea of building libraries from source gives you the jitters, don’t worry
- we don’t need to build anything here. Eigen uses pure header libraries, which means all its
source code is included in header files. There are no separate .CPP files for function and class
definitions - everything goes into the .H files. This makes using Eigen quite simple. To begin
using it, simply #include these header files at the beginning of your own code. You can find
these headers in ~/eigen-git-mirror/Eigen/src.

Of course, the compiler needs to be told the location on disk of any header files you include.
You can copy the ~/eigen-git-mirror/Eigen folder to each new project’s directory. Or, you
could add the folder once to the compiler’s default include path. You can do this by running
the following command on machines with Linux or Mac OS:

$ sudo 1n -s /usr/local/include ~/eigen-git-mirror/Eigen

If you're using a lab machine, add the following line to the end of ~/.bash _profile

export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH$: /eigen-git-mirror

If you're using QT Creator, add the following line to your project (.PROJ) file:
QMAKE_CXXFLAGS = -I ""/eigen-git-mirror"
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Good day, Universe!

Let’s test our installation by writing a simple program. If you’ve followed the steps above, you
should be able to compile the following piece of code without any additional configuration.

#include <Eigen/Core>
#include <iostream>

using namespace std;
using namespace Eigen;

int main() {
cout << "Eigen version:," << EIGEN_MAJOR_VERSION << "."
<< EIGEN_MINOR_VERSION << endl;
return O;

Matrices

Creating matrices with Eigen is simple:

Matrix3f A;
Matrix4d B;

FEigen uses a naming convention for its datatypes that is quite similar to OpenGL. The actual
datatype name is followed by suffixes that describe its size, and the type of its member elements
respectively. In the example above, the variable A is of type Matrix3f — that is, a 3x3 matrix
of floats. The variable B is a 4x4 matrix of doubles. Keep in mind, though, that not all
combinations of size and type are valid — Matrix2i works, but Matrix5s throws an error.
That is not to say you can’t create 5xb matrices of type short, or that you can only create
square matrices. Doing so merely requires a slightly different syntax:

// 5x5 matrix of type short
Matrix<short, 5, 5> Mi1;

// 20x75 matrix of type float
Matrix<float, 20, 75> M2;

In fact, this is how all matrices in Eigen are created under the hood. The datatype names
described above are only provided as a convenience for commonly used sizes and types. What’s
more, Eigen even allows us to create matrices whose size is not known at compile time by using
an X in place of the size suffix (MatrixXf, MatrixXd).

However, as the majority of graphics operations only require us to work with 3x3 and 4x4 single
or double precision matrices, we will restrict our attention in this tutorial to the datatypes
Matrix3f, Matrix4f, Matrix3d, and Matrix4d.



(CS2240 Interactive Computer Graphics

Initialization

Now that we’ve created our matrix variables, let’s assign some values to them:

// Initialize A

A << 1.0f, 0.0f, 0.0f,
0.0f, 1.0f, .0f,
0.0f, 0.0f, .0f;

= O

// Initialize B by accessing individual elements
for i = 1:4 {
for j = 1:4 {
B(j, i)
}

]
o
o

}

The first method shown above uses the comma initializer syntax: the programmer specifies
the coefficients row by row. Note that all coefficients need to be provided — if the number of
coefficients does not match the size of the matrix, the compiler will throw an error. Thus, you
can imagine this syntax becoming quite cumbersome for large matrices. !

The second method accesses the individual coefficients of the matrix B using the overloaded
parantheses operators. Indexing starts at zero, with the first index specifying the row number,
and the second the column number. As you have probably guessed, you can use the same syntax
to query the coefficients. Can you guess whether the following code prints a zero or a one?

cout << A(1, 2);

Notice that we have structured our loops such that the outer loop runs over the columns, and
the inner loop iterates over the rows. Doing it the other way around would have worked too,
but would have been less efficient. This is because Eigen stores matrices in column-magjor order
by default. This can be a bit confusing since coefficients in the comma initialization format are
specified in row-major order. Another potential point of confusion is that unlike C/C++, or
Python arrays, Eigen uses parantheses rather than square brackets to access matrix elements.

In addition to the above two methods, Eigen provides utility functions to initialize matrices to
predefined values:

// Set each coefficient to a uniform random value in the range
(-1, 1]
A = Matrix3f::Random() ;

// Set B to the identity matrix
B = Matrix4d::Identity () ;

// Set all elements to zero
A = Matrix3f::Zero();

// Set all elements to ones
A = Matrix3f::0nes();

When using comma initialization, the inputs can even be other matrices and vectors. You can learn more
about this feature at https://eigen.tuxfamily.org/dox/group__TutorialAdvancedInitialization.html.
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// Set all elements to a constant value
B = Matrix4d::Constant (4.5) ;

Matrix Operations

Common arithmetic operators are overloaded to work with matrices:

Matrix4f M1 = Matrix4f::Random() ;
Matrix4f M2 Matrix4f ::Constant (2.2);

// Addition
// The size and the coefficient-types of the matrices must match
cout << M1 + M2 << endl;

// Matrix multiplication
// The inner dimensions and the coefficient-types must match
cout << M1 *x M2 << endl;

// Scalar multiplication, and subtraction
// What do you expect the output to be?
cout << M2 - Matrix4f::0Ones() * 2.2 << endl;

Equality (==) and inequality (!=) are the only relational operators that work with matrices.
Two matrices are considered equal if all corresponding coefficients are equal.

cout << (M2 - Matrix4f::0nes() * 2.2 == Matrix4f::Zero())
<< endl;

Common matrix operations are provided as methods of the matrix class:

// Transposition
cout << Mil.transpose() << endl;

// Inversion ( #include <Eigen/Dense> )
// Generates NaNs if the matrix is not invertible
cout << M1l.inverse() << endl;

Sometimes, we may prefer to apply an operation to a matrix element-wise. This can be done
by asking Eigen to treat the matrix as a general array by invoking the array() method:

// Square each element of the matrix
cout << Ml.array().square() << endl;

// Multiply two matrices element-wise
cout << Ml.array() * Matrix4f::Identity().array() << endl;

// All relational operators can be applied element-wise
cout << Ml.array() <= M2.array() << endl << endl;
cout << Mi.array() > M2.array() << endl;

Note that these operations do not work in-place. That is, calling M1.array() .sqrt() returns
a new matrix, with M1 retaining its original value.
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Vectors

A vector in Eigen is nothing more than a matrix with a single column:

typedef Matrix<float, 3, 1> Vector3f;
typedef Matrix<double, 4, 1> Vector4d;

Consequently, many of the operators and functions we discussed above for matrices also work
with vectors. The naming convention is also similar (in this case, the size suffix defines the
one-dimensional length, rather than the square dimensions).

// Comma initialization
v << 1.0f, 2.0f, 3.0f;

// Coefficient access
cout << v (2) << endl;

// Vectors of length up to four can be initialized in the
constructor
Vector3f w(1.0f, 2.0f, 3.0f);

// Utility functions

Vector3f vl = Vector3f::0nes();
Vector3f v2 = Vector3f::Zero();
Vector4dd v3 = Vector4d::Random() ;
Vector4d v4 Vector4d::Constant (1.8) ;

// Arithmetic operations
cout << vl + v2 << endl << endl;
cout << v4 - v3 << endl;

// Scalar multiplication
cout << v4 x 2 << endl;

// Equality

// Again, equality and inequality are the only relational

// operators that work with vectors

cout << (Vector2f::0mnes() * 3 == Vector2f::Constant (3)) << endl;

Since vectors are just one-dimensional matrices, matrix-vector multiplication works as long as
the inner dimensions and coefficient-types of the operands agree:

Vector4f v5 = Vector4f(1.0f, 2.0f, 3.0f, 4.0f);

// 4x4 * 4x1 - Works!
cout << Matrix4f::Random() * v5 << endl;

// 4x1 x 4x4 - Compiler Error!
cout << v5 * Matrix4f::Random() << endl;
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As you would expect, matrix multiplication doesn’t work with two vectors as the inner dimen-
sions of two nx1 matrices don’t match. However, transposing one of the vectors fixes this:

// Transposition converts the column vector to a row vector

// This makes the inner dimensions match, allowing matrix
multiplication

vl = Vector3f::Random() ;

v2 Vector3f::Random() ;

cout << vl * v2.transpose() << endl;

The linear algebra savvy amongst us probably recognized the last operation as nothing other
than the dot product. In fact, vectors have built-in functions for the dot product, and other
common operations:

cout << vi.dot(v2) << endl << endl;
cout << vi1.normalized () << endl << endl;
cout << vil.cross(v2) << endl;

// Convert
Vector3f s
Vectord4f q
cout << (s

)

vector to and from homogenous coordinates
Vector3f ::Random() ;

s.homogeneous () ;
= g.hnormalized()) << endl;

And, finally, element-wise operations can be performed by asking Eigen to treat the vector as
a general array:

cout << vl.array() * v2.array() << endl << endl;
cout << vl.array().sin() << endl;

Example: Vertex Transformation

Now that we have a basic understanding of Eigen, let’s use it to perform a very common
operation in graphics: vertex transformation.
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#include <Eigen/Core>
#include <Eigen/Geometry>
#include <iostream>

using namespace std;
using namespace Eigen;

int main() {

float arrVertices[] = { -1.0, -1.0, -1.0,

1.0, -1.0, -1.0,

1.0, 1.0, -1.0,

-1.0, 1.0, -1.0,

-1.0, -1.0, 1.0,

1.0, -1.0, 1.0,

1.0, 1.0, 1.0,

-1.0, 1.0, 1.0};
MatrixXf mVertices = Map< Matrix<float, 3, 8> > (arrVertices);
Transform<float, 3, Affine> t = Transform<float, 3, Affine>::

Identity () ;

t.scale( 0.8f );
t.rotate( AngleAxisf (0.25f * M_PI, Vector3f::UnitX() ) );
t.translate( Vector3f(1.5, 10.2, -5.1) );

cout << t * mVertices.colwise().homogeneous () << endl;

}

This example introduces several new Eigen constructs.

To start with, we are using a C++ array to initialize a MatrixXf object. The array holds the
X, y, and z coordinates of the vertices of a cube. 2 Eigen’s Map class allows us to perform this
initialization.

Next, we create a transformation. You may recall from linear algebra that a transformation is
nothing more than a matrix. This is also true in Eigen — the Transform class just makes it
easier to deal with the underlying matrix representation. You can access the underlying matrix
by calling t.matrix().

Transform<float, 3, Affine> t creates a 3-dimensional affine transformation with single-
precision floating point coefficients. The next three lines apply a uniform scaling, rotation, and
translation to the created transform object. In matrix form, this may be written as

U=TRSI
Where [ is the identity matrix.

The rotation is specified as a combination of angle and rotation-axis by using the AngleAxisf
class. The axis should be normalized, and in most cases we can simply use the convenience
functions Vector3f::UnitX(), Vector3f::UnitY, and Vector3f::UnitZ() which represent
unit vectors in the x, y, and z directions, respectively.

2We could have loaded the array into an array of eight Vector3f objects. However, storing it as a matrix is
more efficient, and leads to cleaner code.
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Finally, we apply the transformation to the vertices of our cube. See how storing the vertices as
columns of a matrix allows us to transform all vertices with a single matrix multiplication. To do
this, however, the inner dimensions of the transformation matrix, and the vertex matrix have to
match. t uses homogeneous coordinates, and so a 3-dimensional transformation is represented
as a 4x4 matrix. To match these dimensions, we homogenize each column of our vertex matrix
by using the colwise () method.

Each column of the output represents a transformed vertex:

0.4 2 2 0.4 0.4 2 2 0.4
8.65499 8.65499 9.78636 9.78636 7.52362 7.52362 8.65499 8.65499
1.75362 1.75362 2.885 2.885 2.885 2.885 4.01637 4.01637

Further Reading

The Eigen Quick Reference Guide provides a handy reference to most matrix and vector oper-
ations: https://eigen.tuxfamily.org/dox/group__QuickRefPage.html



