
[CSCI 2240] Assignment 1: Path Tracing (path) 
Released: 2/7/2020 
Due: 2/21/2020 @ 11:59pm EST 
 
In this assignment, you will implement a physically-based renderer based on the path tracing 
algorithm. Path tracing is a simple, elegant Monte Carlo sampling approach to solving the 
rendering equation. Like ray tracing, it produces images by firing rays from the eye/camera into 
the scene. Unlike basic ray tracing, it generates recursive bounce rays in a physically-accurate 
manner, making it an unbiased estimator for the rendering equation. Path tracers support a wide 
variety of interesting visual effects (soft shadows, color bleeding, caustics, etc.), though they 
make take a long time to converge to a noise-free image. 
 
If you have written a ray tracer in a previous graphics course (e.g. CS 123 here at Brown), you 
are welcome to extend your ray tracing code for this assignment. If you do not already have a 
ray tracer, or if you do but you’d rather start from a clean slate, we provide a barebones ray 
tracer below (see “Resources”). 

Relevant Reading 
● The lecture slides! 
● The Global Illumination Compendium 
● The Graphics Codex - $10 rendering reference (by Brown alum Morgan McGuire) 

 

Requirements 
This assignment is out of 100 points. 
 
20% of the assignment score comes from your grade on the Radiometry in “Flatland” handout 
(20 points) 
 
Your path tracer must implement at least the following features: 

● Four basic types of BRDFs: 
○ Diffuse (5 points) 
○ Glossy reflections (5 points) 
○ Mirror reflection (5 points) 
○ Refraction (with Fresnel reflection) (5 points) 

● Soft shadows (5 points) 
○ From sampling area light sources. 

● Indirect illumination (5 points) 
○ Your path tracer must produce color bleeding and caustics. 

https://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf
http://graphicscodex.com/


● Russian roulette path termination (5 points) 
● Event splitting (10 points) 

○ At each recursive path tracing step, separately accumulate the contributions of 
direct lighting and indirect lighting. 

○ Be careful not to double-count light sources in both contribution terms! 
 
Your path tracer should take a scene file as input and output an image to disk. To produce 
output images, you’ll need to convert the high-dynamic range radiance values produced by the 
path tracer into low-dynamic range values that can be written to standard 24-bit RGB image 
formats such as JPEG or PNG. You’ll need a tone-mapping operator for this; a simple global 
operator such as Equation 3 of this paper is fine (5 points). 
 
In addition to your code, you’ll also submit images showing off what your path tracer can 
do (5 points) 
You must submit images depicting at least two different scenes. 
These images should demonstrate every feature that your path tracer implements. 
You must also provide comparison images of a scene with and without direct lighting. 
A Cornell Box scene can be a good test-bed for different types of rendering effects; the starter 
code repository contains such an example scene. 
Submitted images should be easily-viewable low-dynamic range images in e.g. PNG format. 
You should try to produce the highest-resolution, highest-sample-count images you can by the 
submission deadline. 
 
Additionally, you should submit a plaintext README file (5 points) 
The README file should describe how to run your path tracer (e.g. how to specify different 
scene file inputs). 
This file should list all the features your path tracer implements. 
It should also describe what features are demonstrated in the images you’ve submitted. 
 
Successfully implementing all of the requirements results in a total of 80/100 points (a grade of 
B). 
To score 100/100 (or more!), you’ll need to implement some extra features (see “Extra 
Features” below) 
 

Material Specifications 
 
Required materials 
 
Your path tracer must support these 4 types of materials: 

● Ideal diffuse 
● Glossy specular 

http://www.cs.utah.edu/~reinhard/cdrom/tonemap.pdf


● Ideal specular (mirror) 
● Dielectric refraction (refraction + Fresnel reflection) 

 
You do not need to support any materials beyond this. For example, it’s not necessary to 
handle materials that combine a diffuse and a glossy specular component (or other 
combinations of material types). You may do so if you wish, but it’s not required—in your 
submission, we only expect to see images depicting the 4 types of materials above. 
 
Getting and interpreting materials from input files 
 
Our scene files load ‘mesh’ primitives from .obj files, and .obj files sometimes also come with an 
associated .mtl file. The .mtl file provides materials for the geometry in the .obj file at the 
per-face level (i.e. per triangle). The latest revision of the starter code includes some 
commented-out example code showing how to read both types of materials (per-object and 
per-face) from a mesh that’s been hit by a ray. See the PathTracer::traceRay function in 
pathtracer.cpp for these examples. 
 
The materials parsed from the .mtl file are a single material struct/class that contains coefficients 
for diffuse, specular, reflective, etc. See utils/tiny_obj_loader.h in the stencil code for detailed 
parsing logic. A detailed description of mtl specification can be found at 
http://paulbourke.net/dataformats/mtl/. The parameters that are most relevant to this assignment 
are Kd, Ks, Ke, Ns, Ni and Illum (you would mostly only need 2 and 5 for illum).  
 
To convert such a material to one of the 4 required types of materials for this assignment, you 
can use whatever logic you like. For example, if you encounter a material with nonzero diffuse 
coefficient but zero for all other coefficients, a sensible thing to do might be to treat that material 
as an ideal diffuse reflector. 
 
You do not need to worry about making your code handle all possible types of input 
materials. The only scene files your code needs to run on are the ones you design for it. So, it’s 
perfectly fine to ignore the case when, say, a material has both nonzero diffuse coefficient and 
nonzero specular coefficient, since you are not required to implement materials that combine 
those two effects.  
 
Scenes for submission 
 
The assignment spec states that you need to demonstrate your path tracer on at least two 
different input scenes. You could use the Cornell Box scenes included in the starting code for 
this purpose. Those are taken from https://casual-effects.com/data/, which contain many other 
obj files that you can test on. You can also build your own scenes, and we definitely encourage 
doing so.  
 
Light sources 

http://paulbourke.net/dataformats/mtl/
https://casual-effects.com/data/


 
The assignment spec states that you need to support area light sources resulting in soft 
shadows. The recommended way to do this is to treat objects with emissive materials as area 
light sources. The best place in the code to look through the scene objects for emissive ones is 
probably in Scene::parseTree, which constructs a vector of scene objects before building a BVH 
acceleration structure out of them. You’ll also need to implement a method for sampling a point 
on an area light source (i.e. sampling a point on the surface of an emissive triangle mesh). 

Extra Features 
Each of the following features that you implement will earn you extra points. The features are 
ordered roughly by difficulty of implementation. 

● Attenuate refracted paths (5 points) 
○ Attenuate the contribution of a refracted light path based on the distance it travels 

through the refracting object. For example, a path going through a gray glass 
crystal ball ends up less bright if it goes a long way through the glass rather than 
a short distance. 

● Stratified sampling (5 points) 
○ For your path tracer to converge to a relatively noise-free image, it’ll need to trace 

many rays per pixel. Rather than scattering them randomly over the sensor 
square, try stratified sampling, in which you divide the sensor area into a grid, 
and then pick one or two or twenty samples uniformly in each grid square. 

○ Include at least one image comparing this approach to uniform random ray 
sampling, and describe this comparison in your README. 

● Low discrepancy sampling (10 points) 
○ The rendering problem that a path tracer tries to solve is an integration problem, 

and there’s nothing that says we have use random samples to estimate integrals. 
Rather, any set of samples that are ‘well-spaced out’ but not perfectly uniform (to 
avoid aliasing) ought to work. This is the idea behind low-discrepancy sampling 
(also known as Quasi-Monte Carlo): use an algorithm that deterministically 
generates random sample points that have the right properties. 

○ You can find a more detailed introduction to this concept here.  
○ Include at least one image comparing this approach to uniform random ray 

sampling (or stratified sampling), and describe this comparison in your README. 
● BRDF importance sampling (10 points) 

○ When tracing a recursive ray from a surface intersection, you can choose it 
randomly from the hemisphere; alternatively, you can choose it in a way that's 
approximately proportional to the BRDF, and use importance sampling. 

○ Include at least one image comparing this approach to uniform hemisphere 
sampling, and describe this comparison in your README. 

● Multiple importance sampling (10 points) 
○ Next event estimation separates the contributions of direct vs. indirect 

illumination. Instead, you can use multiple importance sampling (MIS), which 

https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/introduction-quasi-monte-carlo


provides a general procedure for combining samples drawn using different 
sampling strategies. 

○ Check out the chapter on MIS from Erich Veach’s thesis to learn more about how 
it works.  

○ Include at least one image comparing MIS to next event estimation, and describe 
this comparison in your README. 

● Depth of field (10 points) 
○ Instead of generating rays from a single eye location, scatter the starting location 

over a lens (e.g. a disk). This produces an effect that mimics camera defocus 
blur. 

○ The scene will be in focus only at the same depth away from the eye/lens as the 
virtual film plane--rays diverge as they move away from this plane, leading to 
defocus blur. You can control the location of the focus plane by changing the 
location of the virtual film plane. 

○ Obviously, this is an approximation, and not a physically-based model of how 
cameras work. If you’re interested in how you might do that, check out this paper 
on putting a simulated camera lens system into your path tracer. 

● More advanced BRDFs (10 points) 
○ There are many other types of BRDFs you could implement to get more 

interesting material appearance. 
○ The Ward anisotropic BRDF and the Cook-Torrance microfacet model are just 

two possibilities. 
● Image-based lighting (15 points) 

○ Instead of using area lights to illuminate your scene, use a high-dynamic range 
hemisphere or cube-map as a light source. This allows you mimic real-world 
lighting environments. 

○ Paul Debevec provides several light probe images which you can use for 
image-based lighting. 

● Something else! 
○ This list is not meant to be exhaustive--if you’ve got another advanced feature in 

mind, go for it! (though you may want to ask a TA / the instructor first if you’re 
concerned about whether the idea is feasible) 

○ You might consider looking through a recent paper written by the authors of the 
Arnold renderer for some advanced feature ideas. 

 
Any extra features you implement must be described in your README. To get extra credit, 
you must also submit comparison images for each feature that you implement.  
 
You can also get extra credit for sharing a scene you’ve created with the class (2 points). Post 
the scene file(s) and a rendering of the scene to Piazza. If your path tracer is built on top of your 
own ray tracer and uses a different scene file format than the one used by the barebones ray 
tracer we provide, or if you’ve modified our scene file format in any way, you should also post 
instructions for how to read your scene file format.  

https://graphics.stanford.edu/courses/cs348b-03/papers/veach-chapter9.pdf
https://graphics.stanford.edu/papers/camera/
https://en.wikipedia.org/wiki/Specular_highlight#Ward_anisotropic_distribution
https://en.wikipedia.org/wiki/Specular_highlight#Cook.E2.80.93Torrance_model
http://www.pauldebevec.com/Probes/
https://www.arnoldrenderer.com/research/Arnold_TOG2018.pdf


 

Resources 
Here is a barebones ray tracer that you can use to get started: 
 
https://github.com/brown-cs-224/Path-Stencil 
 
This includes all the code needed to load scene files, set up a scene, trace rays through pixels, 
compute intersections of rays with the scene, and output images. 
If you already have your own ray tracer, you may still want to use (a) the scene file parser and 
(b) the bounding volume hierarchy (for fast ray-scene intersections) provided by this code.  

Implementation & Debugging Tips 
● There are a lot of different probability calculations that go into computing the contribution 

of a ray to the final image. Make sure you really understand all of this math before you 
start trying to implement anything. You don’t want to get into the situation where your 
code is producing images that don’t quite look right, and all you can do is resort to 
aimlessly tweaking parts of the code (e.g. fiddling with constants, flipping minus signs) to 
try and make them look right. 

● Don’t try to implement all the required features at once. Implement them one by one, 
thoroughly debugging as you go. 

● Path tracers can take a long time to produce an image. The first thing you should do is 
make sure to compile your code in “Release” mode (or with all compiler 
optimizations enabled, if you’re not using Qt Creator). To speed up your code-test-iterate 
cycle, you’ll want to render low-resolution images (or, small windows cut out of a larger 
image that focus on some region of interest). In addition, you can also parallelize your 
code. Using OpenMP’s parallel for loop is a good option, and there is a commented out 
line in the starter code (pathtracer.cpp, line 21) that illustrates how to do so. Strongly 
recommended! 

● If you’re noticing ‘speckling’ artifacts, i.e. individual isolated pixels that look incorrect: try 
using an image editor to identify the coordinates of a problematic pixel (many image 
editors will display this information somewhere as you mouse over the image). Then, set 
a breakpoint in your code that only fires on that pixel, and use a debugger to step 
through and see what is going wrong. 

● “Does this caustic look right?” The human visual system is easy to fool, and it can be 
hard to tell if your pathtracers are producing correct and/or unbiased results. You can 
compare your renders with “ground truth” images stored in example-scenes/ground_truth 
as you write and debug your pathtracer. These images were either rendered with the 
production renderer Mitsuba, or found here.  

https://github.com/brown-cs-224/Path-Stencil
http://supercomputingblog.com/openmp/tutorial-parallel-for-loops-with-openmp/
https://www.mitsuba-renderer.org/
https://graphics.stanford.edu/~henrik/images/cbox.html


Submission Instructions 
Submit your assignment by running cs224_handin path from a CS department terminal. You 
should run the handin script from a directory containing all the files you wish to submit. This 
directory must include a file named ‘README’ for the submission to be accepted. Have 
opinions on the assignment? We’d love to hear from you! Please fill out this feedback form 
(optional) to help us make it better. 

https://docs.google.com/forms/d/e/1FAIpQLSdg8E9HK5vCV_3g3fJSy-myI67sD_5eZksqZuBqM-RM2-fjDA/viewform?usp=sf_link

